Wavelet-based fractal signature analysis for
automatic target recognition
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1 Introduction gions and how this can be expressed quantitatively. The
answer to the first question is obvious due to the fact that
for humans it is natural and easy to classify textures or to
segment textured images into homogeneous regions. There-
fore this should be the standard that determines the homo-
geneity of two textures. The second question, on the other
hand, does not have a straightforward answer. Computer
vision researchers have for many years attempted to model
the basic components of the human visual system to cap-
ture our visual abilities. As a result of these efforts, several
models have risen to try and measure quantitatively the

The accurate detection and discrimination of texture re-

mains one of the most fundamental problems in computer
vision. Regardless of whether the application is target de-
tection, object recognition, texture segmentation, or edge
detection, we must be able to recognize and label homoge-
neous texture regions within an image and differentiate be-
tween distinct regions. We can safely state that scene seg
mentation is one of the most important and fundamental
tasks of early vision. Moreover, the solution to many

vision-related problems depend on an efficient image seg-. ~-=" . .
mentation to arrive at correct solutions. Thus the develop- INtrinsic and unique properties of texture patterns. Most of

ment of accurate texture description models is crucial for these models consist of mapping texture patterns to an
the solution of these problems. The texture measure pre-N-dimensional feature space from which some labeling
sented in this paper, which we call the wavelet-based frac- technique can be applied to determine which texture pat-
tal dimension, is a promising alternative to current texture t€rns can be categorized as similar or not similar.

popular. Stationary statistical models are used to calculate
2 Background parameters that are unique to each texture’s pixel value

The computational processing of textures can be divided dlstrlbuthn. Typical models used are nonlinear Markov
into two main problem areas, segmentation and classifica-fandom field$ (MRFs) and Gauss MRFs. .
tion. Texture classification consists of taking whole images ~ Probably the most popular approach to quantizing tex-
and grouping them into texture classes or categories, so aduré properties is currently the usage of Gabor filters to
to be able to rapidly detect whether two texture samples areperfo_rm feature extraction. Gabor filters are modulated si-
alike or dissimilar. Texture segmentation is, on the other Nusoids of the form
hand, the process by which an image is partitioned into
regions of homogeneous texture patterns. Segmentation is a 1
more complex problem than classification since it involves _ 2 iAX
discriminagng trt)axtures and being able to tell them apart. Gx,0,A) = (2mo) 2 X~ x20) €7, @
But it also involves the optimal detection of boundaries
between nonhomogeneous texture regions.

) whereA is the frequency of the sinusoid amddetermines
2.1 Texwure Metrics the width of the Gaussian envelope. These filters are known
Two questions that arise from the previous definitions are to have good discrimination capabilities for many types of
what is meant by homogeneous or dissimilar texture re- textures. References 2 to 9 use Gabor filtering as their tex-
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ture metric of choice. The elements of the feature vectors

ctal signature analysis . . .

hull support of the image surface. An alternative and much

created represent the energy of the texture at a particularmore efficient approach lies in the computation of a fractal

frequency and orientation.

Wavelets are very much related to Gabor filters in that
they provide localized space-frequency information for a
signal. In particular, 2-D wavelet transforms provide fre-
quency and orientation content information for 2-D signals.
Wavelets have to the advantage that they partition the fre-
quency plane precisely, unlike Gabor filters. But, Gabor
filters provide complete control over orientation unlike the
more limited control offered by 2-D separable wavelet
transforms. Wavelet-based methods for texture modeling
and feature extraction have generally focused on the utili-
zation of the packets or frames of the Wavelet transform
and using these to obtain features with which to classify or

segment a textured image. References 10 and 11 are good

examples of these methods.

This paper introduces a novel texture metric that can be
used for classification, segmentation, or target recognition
based on the fractal dimension and the 2-D wavelet trans-
form. The wavelet-based fractal dimension provides a fast
feature extraction method that results in very good texture
discrimination capabilities.

3 Wavelet-Based Fractal Dimension

3.1 Fractal Signature

Texture measures offer a means of detecting objects in
background clutter that has similar spectral characteristics.
The “fractal signature”(a feature set based on the fractal
surface area functionwas shown to be very accurate and
robust in gray-scale texture classificatfén'* The strength
of applying fractal theory to texture analysis lies in the
multiresolution nature of texture, which is the basis of frac-
tals.

Peleg et al* introduced a texture analysis method that

dimension within they wavelet coefficient spaces where a
measure of texture directionality is also obtained. In addi-
tion, multichannel texture models can be built using the
method found in Ref. 13.

3.2 Definition of the Wavelet-Based Fractal
Dimension

The fractal dimension of a compact getis given by

log./ (€,%)

dim (E)= lim log(1/e)

€E— 0

)

where /(¢€,E) is the number of balls of radiusthat cover

the setE. This measure gives a rudimentary geometric de-
scription of a set and how complicated it looks. Thus it

intuitively lends itself to consideration as an accurate tex-
ture metric. See Refs. 18 and 19 for more details on the
mathematical properties of the fractal dimension.

Humans cue to many features when segmenting a scene.
One such feature is the degree of smoothness that a pattern
demonstrates. Thus we can use this feature to try and mea-
sure a texture quantitatively. From the field of functional
analysis it is known that functions can be categorized by
their degrees of smoothness. Functions can be categorized
into functional spaces according to their degrees of smooth-
ness. Besov spaces offer one such way to classify functions
by their mathematical smoothness, which is very close to
our notion of visual smoothness.

Define ¢ to be the space of functions belonging @3
that decay rapidly ak. A Besov spaceg'q(R) is the col-
lection of all functionsf € ¢ such that

measures the area of the gray-level surface at varying reso-

lutions. For a pure fractal gray-level image, this is given by

@)

wheree is the resolution of the gray levels in the image,
is a fractal dimensiof® andF is a constant. The change in

A(e)= Fe2-D)

oo

1/q
fllegam=l®*f ot | 2 ("Nt | <=, (@

where aefR, 1spsw and Isqsco,

Here ¢,

measured area with the changing scale is used as the fractak 27y(2"x) is a wavelet-like function that decays at infin-

signature of the texture. The gray-level surface area is mea-,

sured by covering the surface in 3-D space with a blanket
of thickness 2, whose upper surface and lower surface are
derived using local max and min functions applied to the

image. The surface area can be computed from the volume.

occupied by the blanket. This will give a measure of the
oscillations of the underlying surface for each valueepf
which is used to generate the fractal signature.

Argoul et all® were the first to propose the use of the
wavelet transform for fractal image description. They used
the transform as a microscope to capture the scaling prop-
erties of fractals. Mallat has shown that texture analysis can
be done with the wavelet representation using a fractal di-
mension derived from the power function spectrahis
type of anal:}/sis can be merged with the fractal signature
approach?!® Although the fractal signature can be com-
puted in parallel, there is a large computational overhead in
the max and min functions that are the basis for the convex

ity formed by dilations of the basic functio#, and® € ¢

is a smooth scaling function. The Besov space norm mea-
sures how smooth a function is. If the normfofs high, it
indicates the presence of many high-frequency components
in f and thus a non-smooth function. See Refs. 18 and 19
for more details on the mathematical properties of Besov
spaces.

The results in Ref. 18 show that a fractal dimension of
the graph off e Bg’q(R) can be expressed using its wavelet
coefficients. In other words, the smoothness of a function is
intrinsically connected to the geometric characteristic of the
graph of that function and hence to its fractal dimension.

The dyadic wavelet transform of a functiére: L%(R) is
given by

*See_Ref. 20 for more a more complete introduction to the wavelets and
multiresolution analysis.
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7 b= [ 0w 2 ax, (5)
=)l

where /(x) is typically referred to in the literature as the

mother wavelet and is a compactly supported function that

decays rapidly to zero at infinity. This transform is useful in
providing localized space-frequency information within

certain frequency scales of a function and can also be in-

terpreted as providing smoothness information:

Iog* E|||:2—v|||71/2|[%ﬂv(f )]I|
log™ 2¥

dim [graph(f )]= lim

v—w

+1, (6)
where[ 77,(f )], are the wavelet coefficients of the func-
tion f in the dyadic interval, where|l|=2"". For a 2-D
function f:[0,1]2—9%, we must use the 2-D separable
wavelet transform given by

(7,0 T )(a,b):

S il

The wavelety, is one of the three possible mother wave-
lets that extract horizontal, diagonal,or vertical orientation
information from the functiorf(x,y). Using this definition,
we can extend the fractal dimension equation to 2-D func-
tions f(X,y):

X—a y—bdd 7
o | D)

dim [graph(f )]

10g" = j—o-2 Al M7, )(@,b)]|
- +1,
log™ 2¥

®

where 6 denotes which of the horizontal, vertical, or diag-
onal channels of the 2-D wavelet transform the coefficients
belong to, andA is analogous td except that it is a 2-D
patch of aregA|=2"2". Thus we can think of the 2-D
wavelet-based fractal dimension for a function
f:[0,1]°>— R as a vector belonging %> corresponding to
the three different orientations of the wavelet transform.

= lim

V— 0

To the Next Level ..

Input
e U S G e K
—

— &inj —-
Transform Columns Transform Rows Horizontal Channel
Verticql Channel
- H—
hin] — Low Pass Filter
gfnj — High Pass Filter » einf »

Transform Rows Diagonal Channel

Fig. 1 Computational structure of a discrete wavelet transform;
h[n] and g[n] are low-pass and high-pass filters, respectively.
Three orientation channels are the output of each level of decom-
position.
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Brodatz Textures in HDV Space
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Fig. 2 Sample of 40 Brodatz-like textures in HDV space.

4 Implementation of the Wavelet-Based Fractal

Dimension

To use the fractal dimension as a feature metric, we must
compute it for signals of finite length, i.e., digitized images.
The fact that we are dealing with discrete signals means
that we do not have infinite levels of resolution. This means
we only have a finite number of valueswith which to try
and approximate this limit. Thus we will use the sequence
of values given by different values of and the different
orientations as a feature vector for the image subregion for
which we are trying to compute a fractal dimension.

We evaluate and compute for each image pixel the fol-
lowing formula:

log™{=ucs, [ ripnlulv2"}
log™(2") '

Dy,u(P)= ©)

where./ (p) e "™ M is the image subwindow surrounding

pixel p representing the function for which we are comput-
ing a fractal dimension, ande {0,...,log m} are the levels

of resolution of the discrete wavelet transform of the sub-
image. Figure 1 shows the basic steps of iterative filtering
and downsampling involved in computing the discrete
wavelet transform of a 2-D signal.

To visualize the discrimination properties of our pro-
posed metric, we computed the wavelet-based fractal di-
mension for 40 patches of Brodatz-like texture samples and
averaged them for each orientation channel. Figure 2 shows
the results of the plot in HDV spatdor the 40 Brodatz-
like textures in Fig. 3.

5 Experimental Results

We performed two basic types of experiments to test the
applicability of our texture metric. We first used it to do
simple image segmentation and compare our image results
to the commonly used Gabor filter metrics. Then we pro-
ceeded to use them in targeting experiments from which we
also show the resulting images.

"Horizontal, diagonal, and vertical channels of the 2-D wavelet transform.
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Fig. 3 Collage of 40 Brodatz-like textures.

5.1 Application to Segmentation tering algorithm module will undoubtedly take longer for a

To test the discrimination ability of the wavelet-based frac- feature space of higher dimensionality. .

tal dimension, we decided to compare its feature extraction  Figure 4 demonstrates that the fractal-signature-based
abilities to Gabor filters. For our experiments we used a test Method is able to differentiate better between the woolen
set of 256< 256 8-bit images composed of different texture 1Ot (center and the watexfar righy). It is interesting to
patches taken from the work done in Refs. 3 and 4. For observe that the border between these two textures is not

each image, we computed the wavelet-based fractal dimen-&"Y clear and the fractal-based features are able to detect

sion feature vectors using either ax6 or a 3 32 win- it. The Gabor filters also were too sensitive to the wood
dow size and using the coefficients of up to the first three tehxture t%t tthe botto;n_ and tt)thJts ov?r dsetgmef“ﬁ_d |t.bF|tgure °
levels of the discrete wavelet transform decomposition. The tshgvv\(/Zteraar? durthn;e incslﬁn tzx?urr: Trzsé”l;?)trjcliserg]%f tﬁewegp_
number of levels of the wavelet transform used in the fea- f d PIg | .h b localized TE
ture extraction depended on the window size used; that is, orated metalcentey are also much better localized. The
for smaller window sizes, a smaller number of levels of the

speckles in our segmentation results show that our metric is

transform were utilized due to the more limited resolution. dU!€ sensitive to noise. But these I|r_n|t_at|ons can be_ over-
It is important to note that these window sizes depend on COMe through the use of more sophisticated clustering ap-
the size of the textures being analyzed and they were de_pro_?ﬁhes “klf t_hquneg '?1 Refs. 1 ihanG 45 filt Id
termined manually. For all of our experiments we used the € results in F1g. & show again that t>abor fiiters coul
five-tap biorthogonal wavelet shofnin Table 1. We also not differentiate between two similar textures, the water in
extracted features using Gabor filters for four different ori- thbe centgzr_ anrc]j_ the partlcr:e b(r)]arcé agthebbottom. Irt] can be
entations and three different center frequencies followed by0 served in this |m§|gedt_ att 'ebl or %r etween these ltwo
a pixelwise nonlinear transform and the local absolute av- XtUres Is not readily discernible and our metric is also
eraging described in Ref. 22. We proceeded to Segmemaffected. Th(_a metal texture at the top is oversegmented _by
both feature sets using the simple and well-kndwmeans e Gabor filters, probably due to the overall change in
clustering techniqué® using the feature vectors only and brlghli?ess gcrqssﬂghe texture:[ lzlgurg 7 shO\]/cv?hsome rr:otre
no spatial coordinate information. We observed in general speckle noise In e segmentation image of the wavelet
that our feature metric differentiated better between visu- based fractal_ signature. But the Gabor filter output creates
ally close textures than the Gabor filters. This result is even Iagge qutstrlln tse\;eral of the textures due to brightness
more interesting when we take into account the fact that the © aTr;]ges In etet>_< ures. its in Fia. 8 sh imost identi
dimensionality of our feature space was at most 9 while the € segmentaton results in F1g. ¢ shows aimost iaenti-
Gabor metric was 12. So while the running times of the €& output from both our metric and Gabor filters. The most
feature extraction procedures are about the same, the Cluspbwous differences are the better circle edge localization
' and more speckle noise in our metric segmentation. Figure
9 shows a more clean segmentation using Gabor filters than

Table 1 Coefficients for the low-pass and high-pass filters of the our metric. The poor boundary detection between the
biorthogonal wavelet used in the experiments. woolen cloth(left) and the coarse sandottom) is most
probably due to their very close proximity in HDV space
Low-pass filter 0.353553, 0.707107, 0.353553 (see Fig. 3.
High-pass filter ~ —0.176777, 0.353553, 1.06066, 0.353553, Figure 10 shows the percentage of mislabeled pixels for
—0.176777 each of the wavelet-based fractal dimension segmentations.

Note again that we are not utilizing a sophisticated cluster-

Optical Engineering, Vol. 37 No. 1, January 1998 169



170

Espinal et al.: Wavelet-based fractal signature analysis . . .

(@) (b) (©

Fig. 4 (a) Testimage 1, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16X 16 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

(a) (b) ()

Fig. 5 (a) Testimage 2, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16X 16 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

(a) (b) ©

Fig. 6 (a) Testimage 3, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16X 16 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

ST 3 SR At A1 80"
A % SiE 4

(@) (b) (©

Fig. 7 (a) Testimage 4, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16X 16 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.
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(a) (b) (©

Fig. 8 (a) Testimage 5, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 16X 16 and first two levels of wavelet transform decomposition), (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

(a) (b) ©

Fig. 9 (a) Testimage 6, (b) segmentation result using wavelet-based fractal dimension features (using
window size of 32X 32 and first two levels of wavelet transform decomposition), and (c) segmentation
result using Gabor filter features with four orientations and three center frequencies.

Percentage of Misclassified Pixels
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1 2 3 4 5 6
Texture Image

Fig. 10 Pixel error percentage results for the six segmentation examples.
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Fig. 11 Polarization, reflectance, and thermal IR band image.

ing technique. Better results can be obtained by incorporat- The total area of the targets with respect to the field of
ing spatial constraints into the clustering technique by dis- view (FOV) was 0.05%. In addition, their spectral signa-
couraging small blocks of homogeneous pixels. Energy tures were extremely close to that of the vehicular tracks
minimization techniques like simulated annealing can ac- that were also present. An approach based on thresholding
complish this but are very computationally intensive. The yielded a probability of false alarrP, of 34% without
authors of Refs. 3 and 4 have overcome some shortcomingsurther processing. Analysis of the thermal band using the
of this energy minimization method. fractal signature derived from the channels of the bior-
52 Automatic Target Detection thogona_l'closed set w_avelet transform with an image de-
) ) ) ) composition of 64 subimages gave a probability of detec-
Our studies with the texture mosaics revealed the link be- tion p, of 83% for aPg, of 0%, and aPp, of 100% with a
tween the wavelet-based fractal signature and the smooth-F,FA of 10%. Classification accuracy of the algorithm is

ness of a texture. Man-made objects such as targets tend Qo increased if the polarization and thermal images are
be characterized by linear/angular features that show UPs sed using a possibilistic OR operation in thehannels

well in the wavelet detail channels, thus leading to rela- bef text \vsis. Thi thod duceda of
tively high values for the signature at every scale. The frac- elore texture analysis. 1This method produce®s o

tal signature of the target will be mixed with that of the 100% with aPgs of 7% and compares favorably with a

background clutter, but to the first order this will be a ad- Previously reported neural-network-based technfgue.
ditive mixing of signature$? In the second study, we used a series of images from the

All images had a spatial resolution of 5¢%12 pixels China Lake thermal IR database. These include both land

and 8 bits of gray scale. Although targets are made up of a&nd nautical examples. The target signatures are known
number of different textures, their combination should give Within bandpass limits in the three detail channels. A fixed
a unique signature. Rather than deriving a signature for Size window of size & 4 is used to scan the input image in
each pixel, as was done in the mosaic study, we derivedthe lowest level of the wavelet coefficient space using the
signatures for larger windows that encompass the target. texture measure previously defined in this paper. This is
In the first study, we used a series of registered imagesfollowed by a simple region-growing process, which gives
that were taken in the polarization, reflectance and thermalrise to the bounding rectangle around the target.
IR bands shown in Fig. 11. The targets are small cylindrical ~ The first series had land targets hidden in vegetation and
objects that are partially embedded in the ground. a target without any cover. These are shown in Fig. 12,

A ppnd B bl ek, diibiin e ik

Fig. 12 Land target examples.
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e Lo Appreead lonpuae itesd dansa o s bl

Fig. 13 Sea target examples: (a) hot horizon target and (b) target without any cover.

where we have boxed the detected targets in each scene.
Despite the high amount of clutter in each scene, the targets <
were successfully detected. The second series had a nauti-
cal target hidden in the “hot” horizon and a target without
any cover. These are shown in Fig. 13, where we have
boxed the detected targets in each scene. The target in the
left image was detected despite extremely low contrast be- 4
tween itself and the sky return.

3.

6 Conclusions and Future Work

Clearly the wavelet-based fractal dimension offers a new
and promising way to measure texture features. Its ability
to distinguish boundaries between textures that even for
humans are not clear indicates that it is able to cue into
properties of textures that are hard for us to detect.

In all of our experiments, we empirically set the number
of levels of the wavelet decomposition to use and the re-
spective window sizes. This, of course, is not the most
efficient approach. For most images a window size of 16
X 16 and information from the first two levels of the wave-
let decomposition were used for feature extraction. But for
larger sized textures, such as beans or woven thatch, a,
larger window size proved more effective. Thus an adap-
tive approach that determines the optimal value for these
two parameters would be desirable.
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